大数据风控都是利用多维度数据来识别借款人风险。同信用相关的数据越多地被用于借款人风险评估,借款人的信用风险就被揭示的更充分,信用评分就会更加客观,接近借款人实际风险。信和大金融结合自身风控经验整理了大数据风控的九大维度。

一、验证借款人身份
验证借款人身份的五因素认证是姓名、手机号、身份证号、银行卡号、家庭地址。
二、分析提交的信息来识别欺诈
线上申请时,申请人会按要求填写多维度信息例如户籍地址,居住地址,工作单位,单位电话,单位名称等。如果是欺诈用户,其填写的信息往往会出现一些规律,企业可根据异常填写记录来识别欺诈。
三、分析客户线上申请行为来识别欺诈
风控可以借助于SDK或JS来采集申请人在各个环节的行为,计算客户阅读条款的时间,填写信息的时间,申请贷款的时间等。此外,用户申请的时间也很关键,一般晚上11点以后申请贷款的申请人,欺诈比例和违约比例较高。
四、利用黑名单和灰名单识别风险
黑名单和灰名单是很好的风控方式,但是各个征信公司所拥有的名单仅仅是市场总量的一部分,很多互联网金融公司不得不接入多个风控公司,来获得更多的黑名单来提高查得率。如支付清算协会风险共享系统、中国电子商务协会反欺诈系统等都是黑名单数据库。
五、利用移动设备数据识别欺诈
行为数据中一个比较特殊的就是移动设备数据反欺诈,金融机构可以利用移动设备的位置信息来验证客户提交的工作地和生活地是否真实,另外来可以根据设备安装的应用活跃来识别多头借贷风险。
六、利用消费记录来进行评分
常用的消费记录由银行卡消费、电商购物、公共事业费记录、大宗商品消费等。还可以参考航空记录、手机话费、特殊会员消费等方式。
七、参考社会关系来评估信用情况
物以类聚,人与群分。一般情况下,信用好的人,他的朋友信用也很好。信用不好的人,他的朋友的信用分也很低.
八、参考借款人社会属性和行为来评估信用
参考过去互联网金融风控的经验发现,拥有伴侣和子女的借款人,其贷款违约率较低;年龄大的人比年龄低的人贷款违约率要高;贷款用于家庭消费和教育的贷款人,其贷款违约率低;贷款次数多的人,其贷款违约率低于第一次贷款的人。
九、利用司法信息评估风险
涉毒涉赌以及涉嫌治安处罚的人,其信用情况不是太好,特别是涉赌和涉毒人员,这些人是高风险人群,一旦获得贷款,其贷款用途不可控,贷款有可能不会得到偿还。
信和大金融在对以上维度进行精准审核之后,充分运用人工智能风控模型,对数据进行模型套算,全程无人工干预,只通过预先设定的规则跑批作业,极大加强风控审核力度,此外,信和大金融积极接入行业共享数据系统防范风险。如接入央行支付清算协会风险共享系统、中国电子商务协会反欺诈系统等,共享互金行业黑名单,极大地扩充风控数据库,杜绝了老赖、骗贷进场,对投资者的资金安全保驾护航。